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 In this paper, using panel data, I estimate plant level production functions that include variables 

that allow for two types of scale externalities which plants experience in their local industrial 

environments. First are externalities from other plants in the same industry locally, usually called 

localization economies or, in a dynamic context, Marshall, Arrow, Romer [MAR] economies. Second are 

externalities from the scale or diversity of local economic activity outside the own industry involving 

some type of cross- fertilization, usually called urbanization economies or, in a dynamic context, Jacobs 

economies. Estimating production functions for plants in high tech industries and in capital goods, or 

machinery industries, I find that local own industry scale externalities, as measured specifically by the 

count of other own industry plants locally, have strong productivity effects in high tech but not machinery 

industries. I find evidence that single plant firms both benefit more from and generate greater external 

benefits than corporate plants. On timing, I find evidence that high tech single plant firms benefit from the 

scale of past own industry activity, as well as current activity. I find no evidence of urbanization 

economies from the diversity of local economic activity outside the own industry and limited evidence of 

urbanization economies from the overall scale of local economic activity. 

Issues and the Literature  

A number of productivity studies (e.g., Ciccone and Hall (1996), Henderson (1986), Nakamura 

(1985), and Sveikauskas (1975)) have attempted to sort out whether local scale externalities are 

localization-MAR economies from the scale of local own industry activity versus urbanization-Jacobs 
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economies from cross-fertilization enhanced by the scale or diversity of activity outside the own industry 

locally. The issue is important for urban development. If an industry is subject to just MAR/localization 

economies, producers are likely to cluster together primarily in a few cities specialized in traded good 

production in just that activity, or a closely interconnected set of related activities. Specialization 

enhances full exploitation of scale externalities, while conserving on local land rent and congestion cost 

increases. And, indeed, many standardized manufacturing activities such as textiles, food processing, 

steel, auto production, and wood products tend to be found disproportionately in smaller specialized 

metro areas (Black and Henderson (1998)).  

However, if an industry is subject more to Jacobs/urbanization economies, to thrive it needs to be 

in a more diverse, and hence usually larger local environment. So high-fashion apparel and publishing 

manufactures and financial, business, research and development and management services tend to be 

found disproportionately in larger metro areas (Kolko (1999)). There is a general notion, now formally 

modeled in an innovative paper by Duranton and Puga (2000), that the nature of externalities changes 

with product development. In a product cycle type situation, experimental activity is initially found in 

large diverse, cross-fertilizing metro areas; but standardized production is decentralized in smaller more 

specialized (and lower cost) metro areas (Duranton and Puga (2000)). My finding that externalities for 

production plants are primarily localization-MAR may not be surprising, given we are examining 

externalities in standardized manufacturing production activity.  

There is an analysis in the literature about the source, or micro-foundations of local scale 

externalities. As discussed in Marshall (1890) and modeled in a variety of theoretical papers (e.g., Fujita 

and Ogawa (1982) and Helsley and Strange (1990, 1992)), local scale economies may arise from 

information spillovers, search and matching processes in labor markets, local intra-industry specialization, 

and the like. Given the findings in Jaffe et al. (1993) and Adams and Jaffe (1996), there seems to be 

evidence that information spillovers are critical. While this paper provides no direct evidence on the issue, 
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the results are suggestive of information spillovers. Localization-MAR economies arise from the count of 

own industry plants, not from the local scale of own industry employment which measures the scale of the 

local industry-specific labor market. They are also Hicks’ neutral, not interacting with material input 

usage, indicating no tendency of individual plants to out-source more (and hence specialize more) with 

local own industry scale. In terms of information spillovers, we might think of a model where each plant 

engages in a set of experiments about contemporaneous choices of suppliers, of specific fixed and 

variable inputs, and of methods for dealing with local regulators. All local plants benefit from learning the 

outcome of such experiments and the spillovers are proportional to the number of plants, or experiments.  

In terms of the spatial decay of external effects, evidence in Jaffe et al. (1993) and Rosenthal and 

Strange (2000) suggests externalities attenuate sharply with distance.2 I do not have detailed location 

information on plants to estimate decay functions; but I can examine whether externalities emanate just 

from plants in the own county, as opposed to, in addition, from plants in nearby counties in the same 

metro area.  The data also allow investigation of a variety of other issues not previously considered in the 

literature. First there is the issue of whether externalities apply to and derive more from single-plant firms 

than corporate multi-plant firms. Single plant firms may be more reliant on the external environment than 

corporate plants, which may exploit internal-firm networks. Corporate plants may be more isolated and 

insulated from local environments. I also ask whether plants get greater externalities from existing more 

mature plants or from an infusion of newborns, bringing new ideas and experimentation; and I ask 

whether the effect of externalities on productivity declines with plant age or plant vintage. These issues 

are relevant for thinking about spatial clustering and formation of industrial parks. What types of plants 

benefit from spatial proximity—when do same industry plants benefit from being grouped and what types 

of plants can be put in disparate clusters for, say, access to public infrastructure? 

                                                 
2 Rosenthal and Strange (2000) have a nice paper trying to examine spatial decay using plant birth data, rather than productivity 
data. Below we argue that in such modeling it is hard to separate out externality effects from other phenomena, such as mean 
reversion and local births as replacements for local plant deaths.  
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Another key issue concerns whether externalities derive only from the current local industrial 

environment. Or does what was going on around a plant several years ago also affect productivity today? 

That is, are there lagged effects? In an information spillover context certain “experiments” in choices of 

sellers, inputs and responses to regulators yield immediate results and improve current decision-making 

by other plants. But there may be other experiments that take several years to fruition or, alternatively, for 

which the results diffuse slowly, even locally, so effects are lagged. Once results are revealed that yields 

instantaneous improvements in plant operations if the information is still relevant. But this is a description 

of “static” spillovers from experiments that are repeated on an on-going basis to assess changing local 

market conditions and choices of suppliers, buyers, etc. One could distinguish this from a cumulative, 

experimentation process building up a stock of local trade secrets, so that externalities are dynamic in 

nature. Dynamic externalities are the underpinnings of endogenous growth models (Romer (1986)), 

including those in urban settings (Eaton and Eckstein (1997), Black and Henderson (1999)). In an urban 

context, each locality may, for example, build up a stock of local "trade secrets" dependent on current and 

past industrial activity (Glaeser, Klallal, Scheinkman, and Shleifer (1992)), involving sets of cumulative 

“experiments”. That local knowledge accumulation affects productivity of local firms. We cannot 

distinguish between these two interpretations to lagged effects. But we can assess whether lagged effects 

exist, where lagged effects of externalities may have strong implications for industrial mobility (Rauch 

(1993)). New locations have trouble attracting industries subject to lagged external effects because they 

can't offer information spillovers from the past. 

So far, no productivity studies have investigated lagged external effects. Studies investigating the 

existence of so-called dynamic externalities (Glaeser et al. (1992) and Henderson, Kuncoro and Turner 

(1995)) examine employment growth patterns between two time periods, asserting that, if an industry's 

growth is related to base period own industry concentration or to metro area scale, that is evidence of 

dynamic externalities. Such inferences are problematical. In examining employment growth, there are 

allocative shocks across locations (Davis, Haltiwanger and Schuh (1996)), which underlie own industry 

mean reversion of local employment. It is difficult to disentangle dynamic externalities from mean 
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reversion processes—both typically involve the same quantity, measures of past own industry 

employment. Second, if, for example, metro area scale affects own industry employment growth, while 

that could be due to scale externalities, it could also be due to time invariant aspects of the local 

environment such as resource endowments and regulatory structures, which affect both metro area sizes 

and specific industry growth rates. Examining the direct effects of historical environments on plant 

productivity in a panel context will permit isolation of lagged external effects from other factors.  

 In general, the literature presents conflicting evidence about the nature of scale externalities, 

depending on the specification used to identify scale effects, the level of aggregation of the data, and the 

extent to which estimation deals with potential sources of bias By use of plant level data on productivity, 

in carefully chosen specifications, I not only avoid the flawed procedure of making scale externality 

inferences from city-industry employment growth equations, but I also can deal more effectively with the 

key selectivity and endogeneity issues in estimation, as well as separate current from lagged externality 

effects.  

1. INDUSTRIES AND DATA 

 

This paper uses plant level data on productivity for 1972-1992 from the Longitudinal Research Data 

[LRD] of the Census Bureau. It utilizes data from the same source for 1963-1992 to calculate various 

contemporaneous and historical attributes of scale and diversity of the local industrial environment that 

might affect productivity. The environments involved potentially cover 742 counties in 317 metropolitan 

areas. In terms of industries, I assembled data on the five major 3-digit capital goods, or machinery 

industries (excluding the ill-defined residual SIC 359) and on the four major 3-digit high-tech industries. 

The selection is detailed in the Appendix. The machinery industries are construction (SIC 353), metal 

working (354), special industrial (355), general industrial (356) and refrigeration (358) machinery and 

equipment. The high-tech ones are computers (357), electronic components (367), aircraft (372), and 

medical instruments (384).  
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 Data on plants and localities come from the Census of Manufactures for 1963 and then for every 

5 years from 1967 through 1992. For each county and each MSA we know by industry and for overall 

manufacturing, the number of plants, level of employment, births and deaths of plants, diversity across 

industries, the number of plants belonging to multi-plant versus single plant firms, and the like for the 

universe of plants. So we know the characteristics of the local industrial environment in considerable 

detail for both MSA's and counties within MSA's. Some local industrial environment characteristics that 

deal with the composition of the local economy outside of manufacturing come from County Business 

Patterns data for 1977-1992. 

 For machinery and high-tech industries, I examine plant productivity as influenced by the local 

industrial environment for two different samples of plants. The first is a basic sample drawn from the 

Census. Census years are the natural choice since they are the only years for which we have complete 

information on the external environment of plants to relate to plant productivity. However as we will see, 

the drawn sample tends to cover only plants of multi-plant firms, which I call corporate plants. Since 

externalities may be more important for single plant firms which I call “non-affiliates”, I draw a second 

separate sample of just non-affiliate plants from the Annual Survey of Manufactures [ASM} in non-

Census years adjacent to Census years. 

 Let’s start with the sample for corporate plants. In drawing an estimating sample, I must impose 

two restrictions. First is that estimation is based on surveyed (actually reported) inputs and outputs, as 

opposed to imputations. I avoid imputed records since imputations for capital, materials, or even sales are 

typically based on wage and employment numbers and production function estimation from imputations 

would in part reflect imputation rules not productivity relationships. Details on sample selection are in the 

Appendix, but eliminating records with imputations generally only leaves plants that are also in the 

Annual Survey of Manufactures [ASM] for that Census year. That leaves 15-20% of plants from the 

Census in the first cut at creating an estimating sample. 

 A second restriction for any estimating sample is that each plant appears at least twice, which in 

this first sample means it must appear in two different Censuses. The restriction follows from the use of 
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panel methods, either plant fixed effects or first differencing. The problem is that, given the first 

restriction of no imputed data, we are thus generally also requiring a plant to appear in at least two 

different ASM’s in Census years. The ASM is done in waves, where each five-year wave starts the 

second year after a Census and ends the first year after the next Census. As a result, ASM plants in 

different Censuses are in different waves. So, for example, the 1979-83 ASM wave covers just the 1982 

Census, but is picked from plants in the 1977 Census. 

 This construction of ASM waves means that almost no plants in an ASM in a Census year are 

brand new. Plants born between 1972 and 1977 would only generally first appear in the ASM in a Census 

year in 1982, 5-10 years after birth. Second, existing plants of large corporations are included in every 

wave; but only a fraction of smaller firms are included, and almost all of those change with each wave. 

Because of compositional differences in ASM waves (as well as plant deaths), the requirement for a plant 

to appear in two Censuses reduces the estimating sample to 8% of producing plants across the nine-sub-

industries.3 This sample consists mostly of plants belonging to multi-plant firms. Since I draw a separate 

sample of single plant firms (next paragraph), I further eliminate any single plant firms from the Census 

sample to have a sample of corporate plants belonging to multi-plant firms.4 For high tech, this last 

restriction eliminates a further 20 % of plants, with little effect on results. For machinery, the reduction is 

a further 35% and it affects results. Corporate and single plant firms in machinery appear to have rather 

different production processes, as we will see. Despite these reductions, the absolute samples still remain 

large and cover a very wide geography. 

In drawing the second sample of non-affiliates, I use ASM data in non-Census years examining 

single plant-firms in the first and last year of a wave, to yield two plant observations. For the 1979-83 

wave, for example, I then link productivity growth between 1979 and 1983 to changes in the industrial 

environment between the Census years of 1977 and 1982. More details are given in the Appendix. 

                                                 
3 While some weights exist to do weighted regressions from the complete ASM, it is impossible to determine the relative weights 
in the estimating sample, given the numerous and varied restrictions.  
 
4 Earlier versions of the paper did not have this restriction. 
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To get a sense of the high tech and machinery sectors nationally, Table 1 gives basic numbers on 

the national sizes and the spatial distribution of these sectors nationally and how size and spatial 

distribution have changed since 1963. While the national average high-tech industry employment almost 

doubled from 1963 to 1992, machinery is unchanged. I examine spatial distributions at the MSA level, for 

317 MSA's (defined, consistently, for the same counties in 1963 and 1992). All the industries are 

agglomerated: they have noticeable Ellison-Glaeser indices of concentration and significant fractions of 

MSA's have absolutely zero employment in any particular sub-industries. High-tech industries are 

substantially more agglomerated than machinery. They have higher Ellison-Glaeser indices and more zero 

employment MSA's (despite higher national employment). 

 An interesting feature to Table 1 is how concentration has changed over time. The degree of 

concentration as measured by the Ellison-Glaeser index in the high-tech sector stayed the same (or 

increased slightly), while that in machinery declined sharply from 1963 to 1992. That pattern is also 

reflected in the changes in the share of national employment of the 3 largest city-employers (whose shares 

drive the magnitude of the squared elements of the Ellison-Glaeser index). However, at the lower end, in 

both industries there was a substantial spreading out of employment, not readily captured by the Ellison-

Glaeser index. The number of zero employment MSA's fell in half and the share of national employment 

of the bottom 90 percentiles of cities increased. This increase is most noticeably at the expense of 

medium-large employer-cities, those ranked 4-32. In the paper, we will try to relate the extent of and 

changes in agglomeration to the extent and changes in scale economy magnitudes.  

 

2. MEASURING EFFECTS 

 

 In this section, I estimate the nature and extent of agglomeration economies. Specifically I 

estimate production functions at the plant level, looking for direct effects on productivity of the current 

and historical local industrial environment. Based on a first-order Taylor series expansion (in logs) of a 
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general production function for a plant in a particular sub-industry, output of plant k in MSA/county j at 

time ,  ( ),kt y t  is hypothesized to be  

  
2

0

ln ( ) ln ( ) ln ( ) ( ) ( )α β δ ε
=

= + − + + +∑k k s j kj kj
s

y t X t E t s t f t    (1)  

I also look at results for second-order (or translog) and TFP specifications of plant internal technology.  

In (1),  ln ( )kX t is the vector of plant inputs which are capital, labor, and materials. ln ( )jE t s−  

is a vector of industrial environment variables in ( )t s− , such as the total number of plants in the same 

sub-industry in the county in time ( )t s− . Industrial environment variables are entered as having Hicks' 

neutral effects, a presumption I will test. ( )tδ  is a time fixed effect; kjf  is a plant location fixed effect; 

and ( )kj tε  is the contemporaneous error term. Apart from the simplicity and convenience of the fixed 

effects formulation, the modeling of plants as having fixed effects per se (say, representing the 

entrepreneur/manager’s ability) is supported by econometric testing in Roberts and Tybout (1997) and by 

the analysis in Baily, Hulten, and Campbell (1992), and is the subject of modeling (e.g., Lucas (1978)). 

In estimation, I pool high-tech industries and then machinery industries constraining within each 

group the α 's and β 's to be the same. Results for individual high tech and machinery industries are in 

Henderson (1998) and individual industry results are similar to the grouped results for the two sectors. 

Under pooling, ( )tδ  becomes ( )i tδ  or there are a separate set of time fixed effects for each industry, i . 

Equation (1) is estimated by panel methods, so inferences about industrial environment variables will be 

based on how changes in a plant's environment affect productivity. Also the issue of exogeneity of RHS 

variables to the ( )kj tε  will receive considerable attention.  

In equation (1), the ln ( )kjE t s−  variables are measures of the external environment. In assessing 

the nature of externalities, we want to know if a plant learns from existing plants, from new plants, within 

just its county, across the MSA, from the past, etc. For localization/MAR externalities, for Census years, I 

constructed county and metro (MSA) level measures of own sub-industry employment, number of own 
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sub-industry plants of both multi- and single-plant firms and number of own sub-industry births (since the 

prior Census), to try to assess the source of externalities. I examine static externalities, for  0s = , or  

ln ( )kjE t ; and I examine lagged effects for 1s =  and 2, or ln ( 1),kjE t − and ln ( 2),kjE t −  where time 

intervals are five years. So I am asking if the local industrial environments from five or ten years ago 

affect productivity today. 

 In terms of urbanization/Jacobs economies, I start with lack of diversity measures at the MSA 

level, consistent with Jacobs' (1969) notions that metro-wide  diversity is critical to productivity gains 

from cross-fertilization. The various lack of diversity measures describe the degree of specialization of 

total private employment in the MSA outside the own industry, of total manufacturing employment and 

of employment in related industrial activities as described momentarily. The measure used is related to 

the Ellison-Glaeser (1997) index in Table 1, but covers a different dimension. Specifically, for MSA j ,  

the degree of MSA specialization in a set of activities is: 

  

2
( ) ( )

( ) .
( ) ( )

 
= ∑ −  

 

ij i
j

i
j

E t E t
S t

E t E t
       (2) 

 ( )ijE t  is employment in industry i  in city ,  ( ) ( )j i ijj E t E t≡ ∑   is total employment in city j  summed 

over the relevant i , ( )iE t  is national employment in i  and ( ) ( )i iE t E t≡ ∑  is total national employment 

over the relevant i . ( )jS t  is the sum of squared deviations of industry  i 's share in city j  of local 

relevant employment from industry  i 's national share. If a city 's shares over all industries mimic 

national shares it is perfectly diverse; and ( )jS t = 0. As city j 's shares start to deviate from national 

shares ( )jS t starts to rise. At the limit ( ) 2,jS t →  where in city j  industry i 's share is one, while some 

other industry's share of national employment approaches one. In this case the city is completely 

specialized, or has no diversity within the relevant set of activities. A version of the Jacobs hypothesis is 

that as metro specialization, ( )jS t , rises, plant productivity declines. 
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 In defining the relevant i , I experiment with five sets of activities: (1) overall manufacturing 

employment for 20 two-digit manufacturing industries; (2) overall private employment (80 two-digit 

industries); (3) for machinery industries, three-digit level employment within SIC 3500; and (4) for high-

tech industries, employment in high-tech manufacturing, defined as computers (357), communications 

(366), electronic components (367), aircraft (372), missiles and space vehicles (386), search and 

navigation equipment (381), measuring devices (382), and medical instruments (384); and (5) for high-

tech industries, employment in sophisticated private services (engineering and architectural, research and 

testing, computer programming, medical and dental labs, and private colleges and universities).  

Besides lack of diversity measures, given they will turn out to have no effect on productivity, I 

experiment with more traditional measures, the overall MSA scale or total employment in each of the 

listed activities and I also experiment with MSA scale measured by counts of plants. Finally, I consider 

county level, as opposed to MSA level, effects. 

Any results on urbanization-Jacobs economies are subject to a proviso. Among Ciccone and 

Hall's (1996) objections to a form such as eq. (1) is that plant purchases of service (versus material) inputs 

are not recorded in Census data.5 Then, for example, if a city diversifies over time in services, and plants 

purchase more outsourced services (accounting, janitorial, photocopying, payroll, etc.), output could rise, 

for the same observed inputs. In estimation of urbanization-Jacobs economies, we might attribute an 

output increase to changes in Jacobs/urbanization diversity measures, when in fact no spillovers are 

involved. Rather plants are out-sourcing more. I will keep this issue in mind when interpreting results. 

Estimation Issues 

 In equation (1), time-industry fixed effects, ( )i tδ , control for national shocks to productivity and 

for inflation. I use nominal measures of output, capital, and materials, avoiding issues about the accuracy 

                                                 
5 I have two other comments on Ciccone and Hall’s objections. First, their solution of using aggregate regional BEA income data 
may not solve the problem, since BEA has to estimate service data to the service input problem. Second, they object to (1) for 
aggregate city-industry data, because of “doubling counting” – one plant’s output is another’s inputs in the same industry. Use of 
plant level data negates the issue. Moreover even with the aggregate data, under the CRS assumption permitting aggregation, 
equation (1) remains valid. Double counting is obviously an issue for income accounting, but not in specifying production 
function forms. 
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of various national deflators and the extent of national productivity change. That's a topic beyond the 

scope of this paper. The kjf  represent time invariant plant and location fixed effects. Given high fixed 

effect plants (e.g., those run by talented entrepreneurs) may congregate in high fixed effect locations (e.g., 

those with strong regional amenities, resources, or institutions), I can't disentangle plant and location 

fixed effects, but that doesn't affect the estimation. However the kjf  will influence the ln ( )jE t s−  and 

ln ( )kX t , which means OLS estimates are biased (and indeed random effects estimates are rejected in 

favor of fixed effect ones by Hausman tests in all cases). Accordingly I estimate equation (1) for 

unbalanced panels of plants across counties and MSA's by standard fixed effects methods. Doing so raises 

two key issues. 

 The first issue is that use of fixed effect methods requires sufficient variation in all variables, to 

be able to make inferences about effects of changes in the environment on productivity. Plant inputs and 

output display large variation, as do industrial environment variables. The potential problem would lie 

with indices such as the specialization indices in (2). If we have annual data, the variation in 

specialization indices is very small. For the data here in five-year intervals, there is sufficient variation. In 

particular, for estimating samples, the average of the percentage change of absolute deviations for any 

specialization measure ( )( ) ( 1) / ( )− −j j jS t S t S t  always exceeds 15% (with or without outliers) 

between any five-year time periods in all samples. 

 The critical issue is that, for unbiased estimates under fixed effects, we require that the plant 

inputs, ln ( )kX t , and the industrial environment variables, ln ( )jE t s− , are strictly exogenous for all t    

to the ( ).kj tε  That assumption begs the question of why ln ( )jE t s−  measures, such as number of local 

own-industry plants, vary over time if not in response to ( ).kj tε  I assume the ln ( )jE t and ln ( )kX t vary 

in response to, say, changes in local wages, rents, and taxes. Such changes make location j a better or 

worse place in which to locate, or one factor cheaper than another; but these unobserved changes have no 
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direct effect on plant productivity. Also in equation (1), in terms of ln ( )kX t , capital stock is beginning 

of year so it and arguably labor and materials (chosen in t  before revelation of ( )kj tε ) are exogenous to 

the ( ).kj tε 6 I have strong priors that, after controlling for plant/location fixed effects and national time-

industry fixed effects, such shocks are contemporaneous idiosyncratic plant output shocks. 

 Whatever my priors, there may be local shocks, such as provision of MSA infrastructure and 

upgrading in quality of the MSA labor force, that may affect both plant productivity and the local 

(county) industrial environment. Second in equation (1), output and materials are measured in monetary 

terms. One can assume that these goods are traded on a national basis and relative spatial prices are 

determined by national transport networks that vary little over time; then fixed effects would take care of 

these time invariant relative price differences. But one could be concerned that markets are more 

localized. Changes in relative output prices across locations over time would affect both the nominal 

output measure and choices of inputs, as well as local own industry scale. On the input side, changes in 

material input prices affect both measures of material inputs and out-sourcing decisions (relative to in-

house production) and hence plant efficiency and output (Ono (2000)). I conducted different sets of 

experiments in considering these possibilities. All reinforce results presented later.  

First I tried adding in MSA- time fixed effects in addition to plant/location fixed effects to 

directly control for contemporaneous MSA labor force, infrastructure, and local input and output price 

shocks. While results are similar to those obtained with plant/location fixed effects, the procedure is 

suffers from efficiency problems. First it completely eliminates consideration of MSA-wide industrial 

environment variables that are relevant for Jacobs-urbanization economies. Second, it eliminates single-

county MSA’s, sharply cutting some of the samples. Third, for county variables on localization 

economies, identification is now based only on time variation of contemporaneous county differences in 

                                                 
6 However, if annual data were used it would be less clear that the ln ( )kX t  are also exogenous to the ( 1)

kj
tε −  as required – 

that last period’s shock does not affect this period’s inputs. My data are spaced five years apart, so, in fact, it seems reasonable 
that there is no effective impact of a shock from five years ago on inputs today. 
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environments within an MSA. For MSA’s with dominant counties, variation is limited. In a second set of 

experiments, to directly control for local variations in input prices and out-sourcing effects on 

productivity, I use the non-diversity measures for manufacturing, high tech, machinery, and all economic 

activity in equation (2). These measures were discussed earlier as measuring urbanization/Jacobs 

economies, such as information spillovers.7 As such these measures could be doing double duty, 

controlling for externalities and for effects of material input price variations, which will make their 

interpretation difficult (see later). 

 In a final set of experiments, to more generally deal with endogeneity of all RHS variables to 

the ( )kj tε , I tried instrumentation. For 2SLS in a panel, instrumentation requires all instruments be strictly 

exogenous to all ( )kj tε . Such instruments that I have are little correlated with plant inputs; and the 

problem of weak instruments dominates (Bound, Jaeger, and Baker (1995)). I also applied 2SLS to just 

TFP equations (to remove the ln ( )kX t as RHS variables). Instruments such as market potential of the 

MSA and county air quality attainment status are somewhat correlated with ln ( )jE t s− , but they are still 

weak instruments in general. In almost all these 2SLS experiments, externality results tend to rise to 

unbelievably high levels. So I turned to GMM estimation of the production function in (1). I first 

difference the equations, to obtain a set of first differenced estimating equations (e.g., 92-87, 87-82, etc.). 

I impose equal slope coefficients across years, but can now instrument with predetermined variables such 

as lagged plant inputs and lagged industrial environment variables. While this helps with the weak 

instrument problem, instruments for early equation years remain weak (see later). A further drawback is 

that estimation requires plants to remain in the sample for a considerable period of time, drastically 

reducing sample size. The GMM estimation does allow me to test for exogeneity assumptions on 

instruments, as well as assumptions in eq. (1) on absence of serial correlation in the ( )kj tε . 

                                                 
7 Urbanization economies could be Dixit-Stiglitz (1977) diversity effects in local intermediate input markets (Fujita (1988)) as 
well, which don’t directly imply local price effects in input markets. 
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There is one final issue concerning the ( )kj tε , which affects standard error calculations for 

coefficients. Once fixed effects are controlled for, in a given year are the contemporaneous shocks 

affecting plants in the same locality correlated? As noted earlier, I believe that, after controlling for 

plant/location fixed effects and national time-industry fixed effects, such shocks are idiosyncratic plant 

output shocks that are locally uncorrelated. This is consistent with my reading of Davis et al. (1996). But 

Moulton’s (1986) issues of incorrect standard errors in a context with more plant observations than 

geographic areas (given geographic covariates) cannot be ignored. In this context though, as we will see 

the number of MSA’s and counties in the sample is enormous; but it is the case that there are typically 

multiple plants per MSA in any estimation. Results on standard errors with contemporaneous errors terms 

clustered by MSA-year versus results with unclustered errors are almost the same, with standard errors 

moving up or down typically by 5-10%.  Breusch-Pagan test for clustering can’t reject the hypothesis of 

unclustered errors. Therefore we report robust (White corrected) standard errors without clustering.  

 

3.  RESULTS 

 

I estimated many different models for different industries, by a variety of statistical techniques. 

The results presented are the key, robust findings for the four industry groups: corporate high-tech plants, 

high-tech single-plant firms called "non-affiliate" plants, corporate machinery plants, and machinery non-

affiliate plants. The presentation starts with the key summary results on the nature and magnitude of 

localization economies. I then discuss various other formulations for localization economies. Then I turn 

to lagged own industry external effects and finally to urbanization-Jacobs economies. 

 Table 2 presents results for two statistical formulations in columns 1 and 2 for each of the four 

samples: OLS (i.e., just industry-time dummies) and then primary results under plant/location fixed 

effects. For plant inputs of labor, materials and capital, coefficients are of expected magnitudes and 

generally highly significant. Three comments are relevant. First under OLS, input coefficients generally 
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sum to something close to one, consistent with CRS. However, with fixed effects, coefficients generally 

sum to less than one, indicating either decreasing returns or omission of a factor such as entrepreneurship 

(in the plant fixed effects) consistent with the Lucas (1978) model. Second, the result of imposing fixed 

effects differs by input, rising modestly for labor typically, falling for materials, and falling considerably 

for capital. The last is not an unusual result of imposing fixed effects. A typical interpretation is that this 

is attenuation bias accentuated under fixed effects because capital is poorly measured by book value. 

However, under the time differencing involved in fixed effects, one is correlating investment changes 

with output changes where changes in book value more accurately measure investments. 8  An alternative 

interpretation is that capital stocks are highly correlated with unobserved entrepreneurial talent (in the 

fixed effect), so that OLS results overstate the capital coefficient.  

Finally, in the fixed effect results, the technology for corporate and non-affiliate plants differs. 

While their use of labor and capital is similar, their use of materials differs. The difference for high tech is 

not statistically significant; but machinery corporate plants do a lot more out-sourcing, or have a 

significantly higher materials input coefficient (.437 vs. .327), than non-affiliates. This is consistent with 

evidence in Ono (2000) for out-sourcing of service inputs. While in-house production is often viewed as 

having high fixed costs, implying that small plants are more likely to out-source, in fact, the evidence is 

consistent with a model where the fixed costs arise in the out-sourcing decision. Small plants don’t have 

enough volume of business to develop out-sourcing relationships (with specialized orders) and in-house 

more, while larger, corporate firms develop out-sourcing relationships. For machinery we will return to 

these points when discussing urbanization economies later on.  

The focus in Table 2 is on localization economies, which are measured in the table by the number 

of plants in the own sub-industry in the county (not MSA). So, for example within high-tech, for a 

computer plant, localization economies are measured by the count of computer plants in the same county. 

Later in Table 3, I will consider a variety of alternative measures of localization economies. 

                                                 
8 Of course if investments are delayed in being brought into full usage in production, changes in capital will have reduced effects 
in output. However, if I use lagged values of capital in estimation, coefficients are even smaller. 
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Under OLS estimation in column (1), significant localization economies exist in small 

magnitudes in all four samples, with elasticities ranging from .012 to .021, indicating that a 1% increase 

in the number of own sub-industry local plants increases plant output by .021% or less. Plant fixed effects 

to control for both plant time invariant special features (entrepreneurial ability) and location amenities 

(local regulatory and business culture and basic urban infrastructure) change the results dramatically. In 

high-tech, in column (2) compared to column (1), the magnitudes of localization economies rise 4-fold, to 

around .08 in both samples. These are significant localization economies, indicating that, for example 

increasing the number of own industry plants locally from 10 to 100 increases plant output by over 20% 

for the same own plant inputs. That is a strong basis for clustering of like economic activity. 

One may be puzzled as to why the coefficient rises under fixed effect results, although with 

multiple affected coefficients the direction of bias for any one coefficient involves complex relationships. 

But as a partial view, to the extent fixed effects represent county amenities, one would expect plants to 

gravitate to locations with better amenities. Similarly to the extent fixed effects represent better 

entrepreneurial talents we might believe better entrepreneurs would migrate to larger clusters (given, for 

example, they might better afford the higher rents in those clusters (i.e., compete for spots in such 

clusters)). In either case from this partial view, there would be a positive correlation between local 

industry scale and fixed effects, suggesting that introducing fixed effects should lower the scale  economy 

coefficients. Apart from the fact that this is just a partial view of bias, as a practical matter in my sample, 

estimated fixed effects in both high tech samples are slightly negatively correlated with the local industry 

scale, perhaps hinting that where clusters occur are “accidents of history” (Henderson (1999)). 

 In machinery, in column (2) with fixed effects, the magnitude of the external scale coefficient is 

less than under OLS (for machinery samples, local scale and estimated fixed effects are positively 

correlated). In both samples, the coefficients under fixed effects are insignificant.  In regressions where 

individual machinery industries are distinguished (Henderson (1998)), such coefficients are also 

insignificant for all industries. 
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These basic results from fixed effect estimation suggest localization economies are strong in 

high-tech industries and non-existent in machinery. For high tech, magnitudes for non-affiliates appear no 

different than for corporate plants. This would suggest that corporate plants benefit as much from the 

external environment (despite intra-firm networks) as do non-affiliates. However, when I investigate other 

statistical formulations as well as lagged external effects, this conclusion will be altered. 

 The use of a log linear production function does not materially affect results. The results for a 

translog specification are almost identical. I stick with the conventional log linear production because 

translog functions result in poorly behaved global technology specifications. (To get well-behaved ones 

generally requires incorporating a full system of factor demand equations in order to anchor coefficients.)  

TFP results in various specifications are typically similar to those for equation (1). I stick with a 

production function specification, which avoids the presumption that inputs at each instant are chosen to 

minimize total contemporaneous costs.   

 There are a variety of other simple, important experiments pertaining to the results in Table 2. 

First scale economy magnitudes do not vary over time. Specifically, adding in a slope differential term for 

local scale for 1972-82 (vs. the base case of 1987 and 1992) results in coefficients of zero.9 Also scale 

economy effects do not vary significantly with plant age or with plant vintage within the samples, so 

younger and older non-affliates, for example, benefit equally from the local industrial environment. Scale 

elasticities don’t change with local scale, so no diminution of effects is indicated by either a quadratic 

specification or a specification allowing for a differential slope if the plant is in a county that ranks in the 

top eight employment centers over time for that sub-industry.  Finally, our coefficients represent 

“average” effects and one might wonder whether their variance differs with local own industry scale. For 

example, scale effects might operate in a narrower band as local scale rises. Examination of plots of plant 

residuals against local own industry scale (and comparison of variances of residuals for small and large 

employment centers) indicates no change in the variance with local industry scale.                       

                                                 
9  For example, for column (2) results for the four respective industry groups, the differential slopes are -.0043 (.0084), .00064 
(.019), .012 (.0085), and -.0023 (.011). 
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Endogeneity Issues.  

To investigate endogeneity of RHS variables to the ( )kj tε , as explained above, I tried three 

experiments. I report on the ones that use MSA-time fixed effects and instrumentation here. The one 

using non-diversity measures to control for variations in relative local input prices is discussed later. Here 

I first added in MSA-time fixed effects (in addition to plant/location and sub-industry time fixed effects) 

to control for contemporaneous shocks which might influence RHS variables, as well as output. To have 

variation in localization measures, I restrict estimation to multi-county MSA's. Results are similar to those 

in column (2) of Table 2. The coefficients (standard errors) on number of county own sub-industry plants 

for high tech corporate, high tech non-affiliates, machinery corporate, and machinery non-affiliates are 

.085 (.035), .346 (.114), .023 (.020) and -.0090 (.037) for sample sizes of 2343, 769, 5140, and 3880 

respectively. The only real difference compared to column (2) is that the high tech non-affiliate 

coefficient rises 4-fold. For high tech non-affiliates, while the sample size is now quite small, this would 

be the first evidence that non-affiliates benefit more from externalities than corporate plants. But given 

the loss in sample size and loss of efficiency (variation in the data), I rely on the formulation in column 

(2), with just plant/location fixed effects. 

The other experiment involves instrumentation. As detailed in Henderson (1999), instrumenting 

to control for non-orthogonality of the ln ( )kX t  and ln ( )jE t  to the ( )kj tε  suffers from extremely weak 

instruments. For plant inputs, with 2SLS there are no good instruments; so I focused on the TFP 

formulation where we only need to instrument for ln ( )jE t . However even then, it appears that only for 

the high tech non-affiliate sample are instruments for ln ( )jE t  reasonable, with a first stage R2 of .43 (as 

opposed to under .10). There, the significant coefficient on the count of plants is .110, similar to the fixed 

effect results. GMM estimation of eq. (1) in differences may suffer less from weak instruments, since 

predetermined values of ln ( )kX t  and ln ( )jE t  may be used as instruments. In a balanced panel for 

corporate plants, equivalent first stage regressions for plant inputs and ln ( )jE t have R2’s with a range of  
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.15-.23 and a typical value of .20 for high tech. For machinery, the range is .096 to .20, but with a typical 

value of only .10. Neither is great, but it seemed that at least for high tech it was worth proceeding. Under 

GMM, for corporate high-tech, the scale elasticity is .164 (.078) and other coefficients are similar to those 

in Table 2. But the sample size is small (about 1/10 of that in Table 2), given each plant must appear from 

1972 to 1992. Using unbalanced panels doubles the sample size, but adds in plants with only a short 

instrument list (one period of predetermined values, with first stage R2’s of around .05), raising standard 

errors despite the sample size increase. The coefficient (and standard error) for high-tech is then .129 

(.091). For non-affiliates, sample sizes are too small to reasonably draw conclusions from estimates (and 

no estimation was carried out). I do note that GMM estimation in corporate high tech strongly supports 

the absence of serial correlation of the ( )kj tε  and Sargan tests suggest that use of contemporaneous 

values of variables as instruments in addition to predetermined ones is valid. In summary, instrumenting 

simply suffers from poor instruments and very limited sample sizes, doesn’t yield contradictory results, 

and doesn't indicate that correlation of ( )kj tε  with ln ( )kX t is important. I believe that the fixed effect 

controls in column (2) are sufficient. 

Other Localization Specifications . 

 This section focuses on high tech industries, since it is only for these industries that localization 

economies are significant. However the results for machinery are given as well, and all conclusions 

derived here apply to machinery as well. The first question is why are localization economies measured 

by a count of the own industry plants in the county. Why not the MSA? Why not a count of own industry 

employment? Table 3 provides some basic answers to these questions. Column (1) of Table 3 examines 

the issue of why I use a count of plants as the scale measure. Initially I used employment measures but 

these yielded weaker results. Decomposing own industry employment in the county into the number of 

plants and the average employment in those plants (excluding the own plant), as in column (1), reveals 
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the problem.10 In all cases, average employment per plant does not positively contribute to productivity. 

This suggests that localization externalities derive from the existence of enterprises per se, where 

enterprises could be interpreted as separate sources of information spillovers. 

 In column (2), I examine the issue of how localized effects are. Experiments with adding the scale 

of own-industry activity outside the county in the MSA suggest scale outside the own county doesn't 

matter.11  I ran the regressions for all MSA’s, for multi-county MSA’s, and for multi-county MSA’s 

where there is a positive count of plants outside the own county for all observations. Results are almost 

the same in all cases, and I report results in column 2 for the last, most clearly defined situation.12 Again, 

in no case is there a positive significant effect of own industry plants outside the own county affecting 

productivity of a plant. These externality effects seem to be confined to the own county, consistent with 

other evidence in Rosenthal and Strange (2000). If we find plants in the same industry in separate clusters 

in two different counties in the same MSA, we would conclude that plants in one cluster don’t benefit 

from direct externalities from plants in the other cluster. The clusters might be in the same MSA to take 

advantage of common input suppliers, or an accessible output market (controlled for variously by fixed 

effects, time-MSA fixed effects, and later non-diversity measures).  

Another critical issue is whether different types of plants contribute differently to externalities. 

While at the moment, it appears corporate and non-affiliate plants may benefit equally from externalities, 

it seems from Table 3 that non-affiliate plants generate greater externalities.13 In column (3) for the 

corporate and non-affiliate samples in high-tech, the coefficients for the count of non-affiliate plants are 

.067 and .092 respectively, while those for the count of corporate plants are insignificant and .025 and 

                                                 
10 Sample size falls relative to the usual, because of eliminating observations where the plant is the sole sub-industry plant in the 
county. 
 
11  I note there are lots of plants outside the own county. For example for high-tech corporate, the average number of plants in a 
county is 67 and the number outside the own county is 18, rising to 34 in multi-county MSA’s. 
 
12 In all work in the paper, adding in a dummy for zero level observations yields a zero coefficient. So for example, here that 
would apply in the first or second samples, with a dummy variable if the numbers of plants outside the own county in the MSA 
are zero. 
 
13 The average (and standard deviation) of non-affiliate and corporate plants in a county in Census high-tech for example are 51 
(82) and 16 (22). 
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.027 respectively.14 While the differences are not quite statistically significant, the gaps are large and 

suggestive. 15  And it is interesting to note in these results that corporate plants also benefit more from 

surrounding non-affiliates than from other corporate plants. These results accord with Saxenian's (1994) 

case study of Route 128 vs. Silicone Valley for high-tech development. 

 I also examined (not reported in Table 3) whether new plants (births) contribute more or less to 

information flows than existing plants. For machinery, in the two samples, coefficients on births and 

numbers of pre-existing plants entered separately are all insignificant. In high-tech, in both samples, 

coefficients of pre-existing plants noticeably exceed those of births.16 This result is even more compelling 

since births are over-whelming non-affiliate plants, which more generally seem to generate greater 

externalities. While births potentia lly could be a source of new ideas, they may initially contribute less to 

externalities because they are less integrated into local networks. 

 A last issue concerns whether my assumption of Hicks' neutrality in equation (1) is justified. 

Coefficients on the ln (no. own industry plants in the county) interacted with labor, materials and capital 

are small and completely insignificant for both the corporate and non-affiliate samples for high tech 

industries. Hicks' neutrality is a reasonable assumption. For machinery, there is weak evidence of some 

interaction with one significant coefficient out of the six possible—for capital for non-affiliates (but the 

non-interactive capital term becomes negative and insignificant). Later we will see for machinery that any 

non-neutrality has more to do with urbanization economies.  

Dynamic Externalities. 

 Do past environments affect current productivity? As discussed earlier, past environments could 

contribute, for example, to a "stock of local trade secrets", or local depreciable knowledge accumulation, 

                                                                                                                                                             
 
14 The test here is whether corporate and non-affiliate plants entered as separate scale variables in the production function have 
the same elasticity. An alternative is to assume one scale variable, but to decompose it and do a Taylor series exp ansion so the 
scale terms in the production function are ε1 ln(non-affiliate plants) + ε2 corporate/non-affiliate plants, where by construction ε1 
should equal ε2. The actual values of ε1 and ε2 are almost identical to the respective coefficients reported in column 3. 
 
15 As in column (1) adding in the average size of non-affiliate plants results insignificant coefficients (generally negative). 
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which enhances productivity of plants in the present. Or past environments might represent a lag structure 

to, say, information flows or other static externalities. In either case, localities with less past activity in an 

industry offer less in the way of lagged effects, diminishing current productivity. 

I devoted considerable effort to finding lagged effects, given how they are stressed in the growth 

literature and recent urban literature (e.g., Glaeser et al. (1992)). There is absolutely no evidence of 

lagged effects in either machinery samples or in any individual machinery sector (see Henderson (1998)), 

for localization economies, as well as any of our level or non-diversity measures of urbanization/Jacobs 

economies noted earlier. So again, I focus just on high-tech for the moment. I examined whether 

improvements in local industry scale from 5 ( 1)t −  or from 10 ( 2)t − years ago affect productivity today 

and whether urbanization/Jacobs measures also had any impact. For corporate plants there is no evidence 

of these lagged effects in any form. However, for non-affiliates in Table 4, there is strong evidence of 

lagged effects for own industry activity externalities from 5 years ago, but not from 10 years ago and not 

from urbanization/Jacobs measures. Once I allow for lagged effects, it appears localization/MAR effects 

are much larger for non-affiliates than for corporate plants. This accords with the intuition that non-

affiliates are more reliant on external environments, than corporate plants with their intra-firm networks. 

Jacobs -Urbanization Economies 

 There is a significant literature advocating the existence and importance of Jacobs-urbanization 

economies. Diverse and/or large economic bases are thought to promote cross-fertilization among 

industries, through information spillovers, labor market networks and search, and other sources of 

externalities. Evidence of this in the literature for manufacturing based on productivity analysis is weak 

and the results of this study are consistent with that. 

 To try to isolate Jacobs economies, I examine the effect of lack of local diversification, or the 

degree of local specialization of the industrial base, on productivity as given in equation (1). Sample sizes 

differ from the usual, for variables for which I did not have 1972 data from County Business Patterns. 

                                                                                                                                                             
16 For plant fixed effects, the elasticities for births and pre-existing plants for corporate plants are .0431 (.016) and .078 (.025), 
while for non-affiliates they are .0359 (.025) and .115 (.041). Adding in dummy variables for cases where a measure is zero 
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Controlling for plant inputs, local own sub-industry scale, sub-industry-time dummies, and plant/location 

fixed effects, for high tech industries, for both the corporate and non-affiliate samples, variables for non-

diversity in MSA manufacturing employment (twenty 2-digit industries) and for non-diversity within the 

MSA high tech sector (nine 3-digit industries noted earlier) produce positive, rather than expected 

negative signs. For high tech, diversity in total MSA employment (eighty 2-digit industries) produces 

negative signs but is completely insignificant. Experimenting with a variable for non-diversity in modern 

services didn’t fare any better. Lagged measures have zero effect. Turning to machinery, non-diversity in 

manufacturing or within the machinery sector produces again completely insignificant coefficients, but 

non-diversity overall in the corporate sector produces a negative coefficient, significant at the 10% level. 

We return to this momentarily. 

With that one possible exception, non-diversity measures have no effect on productivity in any 

circumstance. Moreover these measures have virtually no effect on other coefficients, in particular the 

materials measure, where some of the diversity measures would relate to local availability, diversity, or 

pricing of materials. This can be seen, for example, in Table 5, parts A and B, by comparing coefficients 

from Table 2 with the column 3 coefficients in Table 5 for the case with non-diversity of overall MSA 

employment represented. 

 Given this overall rejection of a Jacobs-diversity story, I turned to the more general formulation 

of urbanization economies, which are represented just by general scale measures. No measure of scale – 

employment in all manufacturing, employment in all industries, employment in high-tech industries, total 

plants in manufacturing, total plants in all industries in the MSA – had an effect on productivity in the 

high-tech corporate or non-affiliate samples and in any individual high-tech industries in either sample 

(Henderson (1998)). Lagged specifications are similarly insignificant. But machinery is a different story, 

in terms of static externalities. It is the machinery results that we focus on in Table 5, part A. 

Corresponding results for high tech are summarized in Part B, to illustrate the statements just made about 

the lack of urbanization-Jacobs economies in high tech. 

                                                                                                                                                             
results in insignificant coefficients for the dummies. 
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 In machinery in the corporate sample, overall scale measures such as total employment, 

manufacturing employment, and total plants for either manufacturing or overall affect productively 

significantly and very strongly. Results for manufacturing and overall employment are reported in 

columns 1 and 2 of Table 5A; scale elasticities exceed .10 and hence are very large. In column 3, the 

effect of non-diversity in overall employment is also reported. For machinery non-affiliates, while 

coefficients have the same signs as for the corporate plants, the coefficients are smaller and insignificant.  

What might be the source of urbanization economies in the corporate sector of machinery, which 

is not found in the non-affiliate machinery sector or in high tech? It is a puzzle. It might not be surprising 

to find urbanization economies per se for these capital goods industries. Much of machinery, or capital 

goods production is special order. In bigger cities there may be cross-fertilization, where the influence of 

different industries and producers around a plant feeds into an inventive design and production process 

for local special order machinery. There are two problems in assessing that such effects are really present. 

First, we would expect such effects to be more important for non-affiliates than for corporate plants, and 

they are not. Second, while there are MSA level effects, there are not county level effects. For example, 

for the county level measure I had available, total (all other) manufacturing employment in the county, in 

none of the cases is the variable significant. Decomposing MSA manufacturing employment into own 

county manufacturing employment and manufacturing employment in the rest of the MSA, in all cases 

except corporate manufacturing employment, both variables are insignificant (in a multi-county MSA 

sample).17  For corporate machinery, coefficients (and standard errors) for (log) own county and rest of 

county manufacturing employment are respectively -.0025 (.044) and .086 (.029). This would suggest 

these effects do not have to do with information spillovers, which should be at least as great within the 

own county as outside it. One thought is that these effects might represent local demand and price effects, 

but those should operate for non-affiliates also and within the own county as well. 

                                                 
17 Effects are negative in high tech. In non-affiliate machinery, own county and rest of MSA employment (in natural logarithms) 
have coefficients (and standard errors) of respectively .015 (.044) and .00068 (.041). 
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A possibility as to why these effects operate for corporate machinery plants and not for others 

might have to do with materials. Machinery corporate plants outsource more materials than non-affiliates 

as noted earlier, and more than high-tech plants. Urbanization economies could arise from Dixit-Stiglitz 

local scale effects from the overall MSA scale, and hence diversity of locally traded intermediate inputs18 

(as modeled in Fujita (1988) or Venables (1995)), affecting productivity of the industry sector with more 

materials intensive production. But I note that (non-)diversity measures for urbanization economies are 

never significant at the 5% level. However the effects could be based on scale and more pecuniary in 

nature, given the measure of inputs is in value terms. So greater scale might mean greater local Cournot 

competition for any input type (where input types are fixed) and thus lower prices and hence more actual 

materials input and greater output with greater urban scale, for any recorded value of materials inputs. 

Such competition effects also have productivity gains because it is cheaper for plants to out-source and 

avoid expensive in-house production in materials (Ono (2000)).  

There are two issues with this out-sourcing of materials explanation of urbanization economies. 

First, although not necessarily contradictory, I note that materials coefficients are unaffected by the 

introduction of these urbanization measures. Second, there is some evidence of a Hicks’ biased form to 

these urbanization scale economies in the corporate machinery sector (only), where they seem to be 

possibly capital-using and materials-saving.19 For example, interacting overall MSA manufacturing scale 

with inputs produces a negative significant coefficient on the materials term. But that seems at odds with 

the idea that out-sourcing will be more efficient and outsourcing expenditures will increase for firms with 

greater urban scale. The increase in expenditures follows under a Dixit-Stiglitz local intermediate input 

specification where more materials will be used. But even with just Cournot competition effects, lower 

local prices are presumed to involve higher expenditures simply because a greater proportion of plants 

                                                 
 
18 That is machinery producers have as material inputs, a CES Dixit-Stiglitz specification where greater varieties of purchased 
inputs enhance machinery productivity.  
 
19 The coefficients and standard errors for (all variables in natural logarithms) labor, materials, capital, count of own industry 
plants, total MSA manufacturing employment, and labor, capital, and materials interacted with MSA manufacturing employment 
are .709 (.168), .651 (.106), -.091 (.081), .016 (.016), .291 (.090), -.018 (.014), .010 (.0071), and -.019 (.0089). 
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out-source and each plant out-sources a greater span of their inputs and does less in-house production 

(Ono (2000)).  

Finally, as an issue with the materials explanation, it is important to note Ciccone and Hall’s 

(1996) point that urbanization economies could be simply capturing greater outsourcing of business 

service inputs with urban scale, or greater use of purchased service inputs, which are not reported in our 

LDR data. In that case, part of the perceived rise in productivity would be illusionary, representing 

omitted inputs, not urbanization economies. This possibility is reinforced by two considerations. First, for 

this corporate machinery sector, the measure of non-diversity over all industries is almost significant at 

the 5% level, while the measure of non-diversity within manufacturing (the sector supplying material 

inputs) has no effect on productivity at all. Second, the scale effect operates in the corporate sector which 

is much more likely to be involved in service input out-sourcing (Ono (2000)). In summary, there is a 

mystery as to why urbanization economies are so strong for corporate machinery plants but not for others 

and a suspicion that Ciccone and Hall’s concern is relevant.  

The urban growth literature. The negative findings on Jacobs-diversity economies are at odds with 

findings in the literature (Glaeser et al. (1992) and Henderson et al. (1995)) examining city-industry 

employment growth equations, such as reported in Table 6. There, in the usual OLS formulation in 

column (1), decreasing specialization [increasing metro diversity], in both high-tech and machinery 

facilitates employment growth. Similarly in column (2), metro area scale enhances employment growth. 

But these results go away, except for specialization in high-tech, once I add in MSA fixed effects. This 

suggests that, in OLS growth formulations, scale and specialization measures are picking up time 

invariant measures such as natural resources, access to markets and the legal/cultural environment that 

make certain locations permanently more attractive than others.  

With a location fixed effect specification, growth results contradict our productivity results, 

where diversity does not help high-tech and urban scale does help machinery. The contradiction is easy to 

reconcile. Overall scale and diversity may positively affect location decisions through, for example, local 

transport cost savings from improved local upstream and downstream linkages, thus affecting local 



 28 

industry growth. However that is very different from the direct productivity effects of scale and diversity 

externalities, which arise from information spillovers and Dixit- Stiglitz diversity of local inputs.  

 

4. CONCLUSIONS AND EXTENSIONS 

 

 In terms of conclusions, localization/MAR scale externalities arise from the number of local own 

industry plants. High-tech industries experience significant localization economies, while machinery 

industries don’t. Externalities are quite localized, within the own county, so that there are not external 

benefits from plants in other counties in the MSA. It appears in the basic formulation that corporate and 

non-affiliate plants benefit equally from static externalities, even though, corporate plants can rely on 

intra-firm networks across sister plants. But once we consider dynamic externalities, the result accords 

with intuition – non-affiliate plants benefit more from external accumulated local knowledge (or other 

benefits) than do corporate plants, with their reserves of firm experience. Finally, it appears that non-

affiliate plants generate greater externalities than corporate plants. Corporate plants simply seem to be 

more walled-off from the local environment, than non-affiliates, which is the Saxenian (1994) story. 

 Evidence of static Jacobs-diversity economies of any type does not exist for any industry. 

Evidence of static urbanization-scale economies appears for corporate machinery plants. However, oddly, 

they then don’t appear for non-affiliate machinery plants where they ought to be more important. There is 

the concern that urbanization effects are parading as effects of omitted outsourced service inputs. Finally 

there is no evidence of dynamic Jacobs or urbanization economies of any type for any industry. 

 The results bear on two other issues in the literature. Is the degree of agglomeration of an industry 

related to its degree of scale economies? In Table 1 high-tech industries are more agglomerated than 

machinery industries. In this paper they have higher localization economies also, suggesting 

agglomeration and economies are related. However the deconcentration of industries which occurred in 

recent years in Table 1 is not explained by changes in the degree of localization economies, which are the 

same over the sample period. 
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 The literature, especially Arthur (1990) and Rauch (1993), suggests that mobility of industries 

should also be linked to the degree of scale economies and sizes of agglomerations. As scale economies 

rise, new locations are at an increasing disadvantage in attracting plants (and hence becoming production 

sites), since they offer no scale advantages, and with dynamic externalities, no accumulated localized 

knowledge. It seems however that other factors may dominate the determinants of the rate at which 

industries move across locations. 

 While high-tech industries have greater scale economies and a greater degree of agglomeration, 

they are more mobile than machinery industries. In Henderson (1999), I look at industry mobility. I 

divide the distribution of industry shares of national employment across MSA’s into 5 cells and calculate 

mean first passage times. Mean first passage times of moving from the lowest cell (typically a zero share), 

to the top two cells with the top 5 and then the next 10 percentiles of highest ranked industry-employer 

cities, are on average almost twice as fast in high-tech. Similarly the mean first passage times of moving 

down from the top cell to bottom cells are much faster in high-tech. 

 Rather than being based on magnitudes of scale economies and agglomeration sizes, the 

differential in mobility between high-tech and machinery may be explained by aspects of machinery 

production, where backward and forward linkages are important. The five machinery industries relatively 

intensively use heavy inputs – primary iron and steel and primary non-ferrous metals, where the former is 

based on raw materials heavily concentrated around the Great Lakes. For the machinery industries, the 

ratio of these heavy inputs to output averages .125 (with a range for individual industries from .097 to 

.153); and the ratio of heavy inputs to all inputs averages .234 (range .177 to .279). For high-tech, the 

corresponding numbers are .049 (range .016 to .071) and .089 (range .026 to -.120). Apart from 

agglomerating near material sources to save on transport costs with input linkages, the machinery 

industries may be relatively immobile because these sources are geographically fixed. 
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DATA APPENDIX 

 

 A basic description of the choice of industries and the construction of estimating samples is given 

in the text. Here I add some details. Then I give variable definitions.  

Industry Choice. I use the main four high-tech and five machinery good industries (where 

computers are classified as high-tech, not machinery), in the USA. Omitted from machinery is SIC 359 

which is an ill-defined residual category. Also omitted are 3-digit machinery industries with small sample 

sizes; the largest excluded one (SIC 352) was less than 40% of the smallest included sub-industry. Since I 

originally looked at individual industries, small samples often occupied too few locations to be useful. 

Second small sample sizes for any industry can present disclosure problems at the Census Bureau. The 

excluded high-tech industries – communications (SIC 366), missiles and space vehicles (376), search and 

navigation equipment (381) and measuring devices (382) – all had very small sample sizes (even more so 

in the non-affiliate sample). 

Estimating Samples. In the text, there is a fairly long description of the construction of the two basic 

estimating samples. Here I add a few details. I eliminate all plant-years for “administrative records”, when 

all data other than employment and wages are imputed. I eliminate all non-administrative records, where 

an impute flag has been assigned by the Center for Economic Studies of the Census Bureau, based on a 

record-by-record assessment of when most relevant non-labor data has been imputed (due to non-

reporting or reporting errors). 

 In general, I utilize data for a plant only for the sample years for which it remains assigned to the 

same industry. So if a plant appears in two Censuses but in different industries (at least one of which is 

one of my nine sample industries), it is excluded. An exception to this exclusion rule is for the non-

affiliate sample, where in each ASM wave SIC codes are not updated from the Census in which the ASM 

wave is drawn. So if a plant switches industry between 1984 and 1988, it remains by default in the 

estimating sample for non-affiliates. 



 31 

Variables. Plant output is annual production (sales adjusted for beginning and ending year 

inventories of finished products, work-in-progress, and resales). Inputs are total hours worked (production 

workers hours plus 1800 times the number of nonproduction workers), materials used in annual 

production, and beginning of year book value of machines, equipment, and buildings (where for 1987 and 

1992, buildings can’t be separated out). Beginning of year book value may not be the best measure of 

capital stock; but using perpetual inventory methods would require plants to be surveyed in all years 

1972-92, which would reduce the sample sizes to tiny levels. Moreover, with fixed effects, changes in 

book values should fairly accurately measure changes in capital stock. 

 In the non-affiliate sample, capital stock numbers are not available in the ASM for 1988, 1989, 

1993, so I assign the end of year numbers for 1987 to plants in 1988 and to those in 1989 (a different 

wave than for 1988); I assign end of year numbers for 1992 to plants in 1993. The 1988 and 1993 

numbers are thus accurate (ignoring minor typical reporting differences between end of year t  numbers 

and beginning of year 1t +  numbers). 

 Industrial environment variables are generally as described in the text. For scale variables such as 

average plant employment in the industry, I exclude the own plant from the calculation. Similarly for total 

MSA high-tech, machinery, manufacturing and all employment, I always subtract out the own industry 

total for the county. Due to the complexity of repeated calculations, diversity indices are not so adjusted 

(but the effect on the calculated values of indices of the own industry (3-digit) in an MSA diversity index 

for 80 2-digit industries is essentially zero). 

 The count of plants includes the own plant generally (since to adjust would simply involve 

subtracting a constant (1)). However in distinguishing non-affiliate and corporate plant counts, I subtract 

one from the non-affiliate count if the own plant is a non-affiliate and similarly for corporate plants (since 

we want the relevant count outside the own plant). For variables where counts could be zero (e.g., births), 

I add a constant (1) to all counts, so the natural logarithm is defined for the zero case. (Experiments to 

have separate slope and dummy were not fruitful.) 
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Table 1. Industry Size and Agglomeration 

(average across industries)  
 

 Shares of National Employment of:   
 
        3 highest       
  
 National Ellison-Glaeser* ranked city- 4-32 ranked No. of 
Zero Employ  

  Employment Concentration-Index employers city employers  The rest  MSA’s 
Out of 317  

     (1000’s)            
 

  1963 1992 1963 1992 1963 1992 1963 1992 1963 1992 1963 
 
 

High    239   399  .026 .028   26    24    54    46  20    30   173 
  tech  

 
Machinery     200   203  .013  .0071   19    13    46    35  35     52    106 
 
 
 
 
 
 
 
 
 
 

*  The Ellison-Glaeser index is 

2317
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 where E ij is employment in industry i  in city  j, E j is city j’s total 

manufacturing employment, E i is national employment in i ,  and  EN  is national manufacturing employment. The index is the 
sum over cities of the squared deviations of each city’s share of national employment in industry i from its share of national 
manufacturing employment. If for industry  i,   each city’s share of industry  i  mimics its share of total manufacturing, industry  i  
is perfectly deconcentrated and the index has a value of zero. The maximum value of the index when an industry is totally 


